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Abstract: Hydrological model parameters play an important role in the ability of model prediction. In 17 

a stationary context, parameters of hydrological models are treated as constants; however, model 18 

parameters may vary with time under climate change and human activities. The technique of ensemble 19 

Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter 20 

monthly water balance model (TWBM) by assimilating the runoff observations. Through a synthetic 21 

experiment, the proposed method is evaluated with time-invariant (i.e., constant) parameters and 22 

different types of parameter variations, including trend, abrupt change, and periodicity. Various levels of 23 

observation uncertainty are designed to examine the performance of the EnKF. The results show that the 24 

EnKF can successfully capture the temporal variations of the model parameters. The application to the 25 

Wudinghe basin shows that the water storage capacity (SC) of the TWBM model has an apparent 26 

increasing trend during the period from 1958 to 2000. The identified temporal variation of SC is 27 

explained by land use and land cover changes due to soil and water conservation measures. Whereas, 28 

the application to the Tongtianhe basin shows that the estimated SC has no significant variation during 29 

the simulation period of 1982-2013, corresponding to the relatively stationary catchment characteristics. 30 

The evapotranspiration parameter (C) has temporal variations while no obvious change patterns exist. 31 

The proposed method provides an effective tool for quantifying the temporal variations of the model 32 

parameters, thereby improving the accuracy and reliability of model simulations and forecasts. 33 

 34 
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1 Introduction 37 

Hydrological model parameters are critically important for accurate simulation of runoff. Parameters of 38 

conceptual hydrological models can be considered as a simplified representation of the physical 39 

characteristics in hydrologic processes. Therefore, parameter values are closely related to the catchment 40 

conditions, such as climate change, afforestation and urbanization (Peel et al., 2011). In hydrological 41 

modeling, parameters are usually assumed to be stationary, i.e., the calibrated parameters are constants 42 

during the calibration period, and have extrapolative ability outside the range of the observations used 43 

for parameter estimation (Merz et al., 2011). However, the calibration period may contain different 44 

climatic conditions and hydrological regimes compared to the simulation period (Merz et al., 2011; 45 

Zhang et al., 2011; Westra et al., 2014; Patil and Stieglitz, 2015). The model parameters may change 46 

responding to the variations in climatic conditions and catchment properties. For example, land use and 47 

land cover changes contribute to temporal changes of model parameters (Andréassian et al., 2003; 48 

Brown et al., 2005; Merz et al., 2011). As a result, the estimated parameters usually depend on the 49 

calibration period (Merz et al., 2011; Coron et al., 2012; Seiller et al., 2012; Westra et al., 2014). 50 

Therefore, assuming time-invariant model parameters may be unrealistic, especially for catchments with 51 

time-varying climate conditions and/or catchment characteristics.  52 

 53 

The time-variant hydrological model parameters has been reported in a few recent publications (Merz et 54 
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al., 2011; Brigode et al., 2013; Jeremiah et al., 2014; Thirel et al., 2014; Westra et al., 2014; Patil and 55 

Stieglitz, 2015). For example, Ye et al. (1997) and Paik et al. (2005) mentioned the seasonal variations 56 

of hydrological model parameters. Merz et al. (2011) analyzed the temporal changes of model 57 

parameters, which were calibrated respectively by using six consecutive 5-year periods between 1976 58 

and 2006 for 273 catchments in Austria. Recently, Westra et al. (2014) proposed a strategy to cope with 59 

nonstationarity of hydrological model parameters, which were represented as a function of a 60 

time-varying covariate set before using an optimization algorithm for calibration. Previous studies 61 

provided two main methods to estimate the time-variant model parameters: (1) Parameters are estimated 62 

for each consecutive subsets divided from the historical record using an optimization algorithm (Merz et 63 

al., 2011; Thirel et al., 2015); (2) A functional form of the selected time-variant model parameters is 64 

constructed and, the parameters for the function are estimated using an optimization algorithm based on 65 

the entire historical record (Jeremiah et al., 2014; Westra et al., 2014). 66 

 67 

The data assimilation (DA) actually provides another method to identify the potential temporal 68 

variations of model parameters by updating them in real-time when observations are available (Liu and 69 

Gupta, 2007; Xie and Zhang, 2013). The DA method has been widely applied in hydrology for soil 70 

moisture estimation (Han et al., 2012; Kumar et al., 2012) and flood forecasting (Liu et al., 2013; Abaza 71 

et al., 2014). It has also been successfully used to estimate model parameters (Moradkhani et al., 2005; 72 
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Panzeri et al., 2013; Vrugt et al., 2013; Xie and Zhang, 2013; Shi et al., 2014; Xie et al, 2014). For 73 

example, Vrugt et al. (2013) proposed two types of Particle-DREAM method to track the evolving 74 

target distribution of HyMOD parameters, while the true parameters were assumed to be constant. Xie 75 

and Zhang (2013) used a partitioned forecast-update scheme based on the EnKF to retrive optimal 76 

parameters in a distributed hydrological model. Although the DA method has been used to estimate 77 

model parameters, these studies are focused on the estimation of constant parameters. Little attention 78 

has been paid to the identification of time-variant model parameters and the interpretation of their 79 

temporal variations based on the climate conditions and/or catchment characteristics. 80 

 81 

The aim of this study is to assess the capability of the DA method (i.e., the EnKF) to identify the 82 

temporal variations of the model parameters for a monthly water balance model. Thus, a synthetic 83 

experiment, including four scenarios with different parameter variations and one scenario with 84 

time-invariant parameters, is designed for parameter estimation at different uncertainty levels. 85 

Furthermore, two case studies are implemented to estimate the model parameter series and to interpret 86 

the parameter variations in response to the changes in catchment characteristics, i.e., land use and land 87 

cover. The remainder of this paper is organized as follows. Section 2 presents a brief review of the 88 

monthly water balance model and the EnKF method. Following the methodology, Section 3 describes 89 

the synthetic experiment and the application to two case studies. Results and discussion are presented in 90 
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Section 4, followed by conclusions in Section 5. 91 

 92 

2 Methodology 93 

2.1 Monthly water balance model 94 

The two-parameter monthly water balance model (TWBM), developed by Xiong and Guo (1999), has 95 

been widely applied for monthly runoff simulation and forecast (Guo et al., 2002; Guo et al., 2005; 96 

Xiong and Guo, 2012; Li et al., 2013; Zhang et al., 2013; Xiong et al., 2014). The inputs of the model 97 

include monthly areal precipitation and potential evapotranspiration. The actual monthly 98 

evapotranspiration is calculated as follows: 99 

 tanh /i i i iE C EP P EP          (1) 100 

where iE  represents the actual monthly evapotranspiration; iEP  and iP  are the monthly potential 101 

evapotranspiration and precipitation, respectively; C  is the first model parameter; and i  is the time 102 

step. 103 

 104 

The monthly runoff is dependent on the soil water content and is calculated by the following equation: 105 

 tanh /i i iQ S S SC         (2) 106 

where iQ  is the monthly runoff; and iS  is the soil water content. As the second model parameter, 107 

SC  represents the water storage capacity of the catchment in millimeter. The available water for 108 
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runoff at the i th month is computed by 1i i iS P E   . Then, the monthly runoff is calculated as: 109 

   1 1tanh /i i i i i i iQ S P E S P E SC               (3) 110 

 111 

Finally, the soil water content at the end of each time step is updated based on the water conservation 112 

law: 113 

1i i i i iS S P E Q           (4) 114 

 115 

2.2 Ensemble Kalman filter 116 

EnKF is a typical sequential data assimilation technique based on the Monte Carlo method and 117 

produces an ensemble of state simulations to update the state variables and model parameters, 118 

conditioned on a series of observations (Moradkhani et al., 2005; Shi et al., 2014). It is applicable to a 119 

variety of nonlinear problems (Evensen, 2003; Weerts and El Serafy, 2006) and has been widely 120 

applied to hydrological models (Abaza et al., 2014; DeChant and Moradkhani, 2014; Delijani et al., 121 

2014; Samuel et al., 2014; Tamura et al., 2014; Xue and Zhang, 2014; Deng et al., 2015). Furthermore, 122 

the EnKF has been successfully used in time-invariant parameter estimations for hydrological models 123 

(Moradkhani et al., 2005; Wang et al., 2009; Xie and Zhang, 2010; Xie and Zhang, 2013). 124 

 125 

In this paper, the EnKF is applied to simultaneously estimate state variables and parameters (Table 1) 126 
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in the TWBM model. The augmented state vector includes both states and model parameters (Wang et 127 

al., 2009), i.e., Z
x

 
  
 

, where   includes the evapotranspiration parameter C and the catchment 128 

water storage capacity SC, and x  is the soil water content S. The model forecast is conducted for 129 

each ensemble member as follows: 130 

     1

1 11

, ~ 0, , ~ 0,
, ,

kk k
i ii i i k k

i i i ik kk k
ii i ii i i i

where N U N G
x f x u

 
 





 

                  
         (5) 131 

where 1
k
i i   is the kth ensemble member forecast of model parameters at time 1i  ; k

i i  is the kth 132 

updated ensemble member of model parameters at time i ; 1
k
i ix   is the kth ensemble member forecast 133 

of model state at time 1i  ; k
i ix  is the kth updated ensemble member of model state at time i ; f  is 134 

the forecasting model operator, i.e. the TWBM model; 1iu   is the forcing data for the hydrological 135 

model, including precipitation and potential evapotranspiration; k
i  and k

i  are the independent 136 

white noise for the forecasting model, followed a Gaussian distribution with zero mean and specified 137 

covariance iG  and iU , respectively. Note that the parameters in Eq. (5) are propagated by adding 138 

random disturbances to the parameter member between time steps (Wang et al., 2009).  139 

 140 

The observation ensemble member can be written as: 141 

   1 1 1 11 1, , ~ 0,k k k k k
i i i ii i i iy h x N W               (6) 142 

where 1
k
iy   is the kth ensemble member of the model simulated runoff at time 1i  ; h  is the 143 
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observation operator which represents the relationship between the observation and the state variables; 144 

1
k
i   is the noise term which follows a Gaussian distribution with zero mean and specified covariance 145 

1iW  . 146 

 147 

Based on the available state and observation equations, the model parameters and state are updated 148 

according to the following equation: 149 

  1 11 1 1
k k k k

i ii i i i i iZ =Z K y h Z               (7) 150 

where Z  is the augmented state vector that includes both state and parameters; 1
k
iy   is the kth 151 

observation ensemble member generated by adding the observation error 1
k
i   to the observed runoff: 152 

1 1 1
k k
i i iy y              (8) 153 

1iK   is the Kalman gain matrix that represents the weight between the forecasts and observations. It 154 

can be calculated as (Moradkhani et al., 2005): 155 

  1

1 11 1
zy yy

i ii i i iK W


             (9)156 

where 1
zy
i i  is the cross covariance of the forecasted state and parameters; 1

yy
i i  is the error 157 

covariance of the forecasted output. The error covariance matrix is calculated based on the forecasted 158 

ensemble members: 159 

1 1 1

1

1
T

i i i i i i= Z Z
N  


         (10) 160 

where  1
1 1 1 1 1, , zm N m

i i i i i i i i i iZ = z z z       and 1
m
i iz   is the ensemble mean of the forecasted members, 161 
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and N  is the ensemble size. 162 

 163 

Since the parameters are limited within a range, the constrained EnKF (Wang et al., 2009) is used in this 164 

study. The ensemble size, uncertainties in input and output have significant impacts on the assimilation 165 

performance of the EnKF, and they are specified following the previous studies (Moradkhani et al., 166 

2005; Wang et al., 2009; Xie and Zhang, 2010; Nie et al., 2011; Lü et al., 2013; Samuel et al., 2014). 167 

Generally, larger ensemble size causes the propagation of more accurate error information but leads to 168 

computational burden (Moradkhani et al., 2005; Xie and Zhang, 2010). In this study, there are only 169 

three variables including two model parameters and one state variable in the assimilation process. To 170 

satisfy the estimation accuracy and the computational efficiency, the ensemble size is set to 1000 for the 171 

synthetic experiment and the two case studies. In the present study, the uncertainties, including state 172 

variable and parameter errors (  and  in Eq. (5), respectively), and runoff observation error (  in Eq. 173 

(6)), are assumed to follow a Gaussian distribution with zero mean and specified covariance. Note that 174 

the model parameter errors should vary relying on the hydrological model used and the study basin 175 

(Clark et al., 2008). Larger standard deviation can generate greater perturbations to model parameters, 176 

and it can improve the coverage of updated parameters but also may cause fluctuations in the estimates. 177 

In this study, the parameter errors are determined empirically, i.e., the standard deviation of C  is set to 178 

0.01 for all the cases, while that of SC  is set to 5.0, 1.0 and 0.5 in the synthetic experiment, Wudinghe 179 
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basin and Tongtianhe basin, respectively. The standard deviations of both model state and observation 180 

errors are assumed to be proportional to the magnitude of true values (Wang et al., 2009; Lü et al., 181 

2013). The proportional factors of model state are set to 0.05 for all the cases. Different proportional 182 

factors of runoff observation and precipitation (Table 3) are evaluated to examine the capability of the 183 

EnKF in the synthetic experiment; whereas, the proportional factors of runoff observation are set to 0.1 184 

and zero precipitation errors are assumed in the two case studies. It should be noted that the variable 185 

variance multiplier can be used to perturb the observations (Leisenring and Moradkhani, 2012; Yan et 186 

al., 2015). 187 

 188 

2.3 Evaluation index 189 

Two evaluation criteria, including the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) and 190 

the volume error (VE) are used to evaluate the runoff assimilation results for the synthetic experiment 191 

and the application to real catchments (Deng et al., 2015; Li et al., 2015).  192 
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         (12) 194 

where ,sim iQ  and ,obs iQ  are the simulated and observed runoff for the i th month; obsQ  is the mean 195 

values of the observed runoff; and n  is the total number of data points. The NSE has been widely 196 
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used to assess the goodness-of-fit for hydrological modeling. A NSE value of 1 means a perfect match 197 

of simulated runoff to the observations. The VE is a measure of bias between the simulated and 198 

observed runoff. For example, VE with the value of 0 denotes no bias, and a negative value means an 199 

underestimation of the total runoff volume. 200 

 201 

The assimilated parameter results are evaluated using the following criteria, including the Pearson 202 

correlation coefficient (R), the root mean square error (RMSE) and mean absolute relative error 203 

(MARE): 204 
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2 2
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sim i sim obs i obsi

n
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, ,

1
,

1 n sim i obs i

i
obs i

MARE
n

 



           (15) 207 

where ,sim i  and ,obs i  are the assimilated and true model parameters for the i th month; sim  and 208 

obs  are the mean of the assimilated and true model parameters, respectively for the i th month; n  is 209 

the total number of data points. 210 

 211 

3 Data and study area 212 
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3.1 Synthetic experiment 213 

A synthetic experiment is designed to evaluate the capability of the assimilation procedure to identify 214 

the temporal variation of model parameters. Five scenarios of different parameter variations are 215 

developed, as shown in Table 2. The model parameters in the first four scenarios are time-variant, and 216 

those in the last scenario are constant. Parameter C, the evapotranspiration parameter, is considered to 217 

be sinusoidal reflecting potential seasonal variations in hydrological model parameters (Paik et al., 2005; 218 

Ye et al., 1997). An increasing trend is also considered to account for the potential annual or long-term 219 

variability. The change of parameter SC is considered to be gradual and abrupt, since the catchment 220 

water storage capacity can be affected by land use and land cover changes, such as afforestation and 221 

dam construction. The parameters in Scenario 5 are treated as constants like the conventional 222 

hydrological modeling. Observations for precipitation and potential evapotranspiration are generated by 223 

adding a Gaussian disturbance to the corresponding data from a real catchment, and runoff is then 224 

produced using the TWBM model. The data set used in this experiment includes a total of 672 months. 225 

The first 24-month period is set for model warm-up to reduce the impact of the initial soil moisture 226 

conditions. The steps toward identifying temporal variation of model parameters are as follows:  227 

(1) Time series of model parameters are generated, including the time-variant parameters and the 228 

constant parameters. Model parameter sets are produced using a sinusoidal function and/or a linear 229 

trend function within the specified ranges shown in Table 1. The runoff observations for each scenario 230 
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are computed from the TWBM model taking monthly potential evapotranspiration and precipitation, 231 

and the parameters as inputs. 232 

(2) The initial ensembles of model parameters and state variables are generated using uniform 233 

distributions within the specified ranges in Table 1. The ensemble size and the total number of 234 

assimilation time steps are specified. 235 

(3) After the initialization of parameters and state variables, the hydrological model parameters and 236 

states are updated by assimilating the runoff observations obtained in Step (1). The additive errors for 237 

generating the ensemble members of model parameters, state variables and runoff observations are 238 

obtained from Gaussian distributions with zero mean and specified variance. 239 

 240 

To evaluate the effect of errors on identifying parameter variation, different levels of observation 241 

uncertainty are considered in the synthetic experiment, as detailed in Table 3. The uncertainties from 242 

the observed precipitation and runoff are characterized by adding Gaussian noises where the standard 243 

deviations are assumed to be proportional to the magnitude of the true values, and the corresponding 244 

proportional factors are denoted as P  and Q . The proportional factors are set to account for the 245 

practical measurement error (Wang et al., 2009; Xie and Zhang, 2010). 246 

 247 

3.2 Study area 248 
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3.2.1 Case 1: Wudinghe basin 249 

The method is applied to the Wudinghe basin (Fig. 1), which is a sub-basin of the Yellow River basin 250 

and located in the southern fringe of Maowusu Desert and the northern part of the Loess Plateau in 251 

China with a semiarid climate. It has a drainage area of approximately 30,261 km2 and a total length of 252 

491 km. The Wudinghe basin has an average slope of 0.2%, and its elevation ranges from 600 to 1800 253 

m above the sea level. The Baijiachuan gauge station, which is the most downstream station of the 254 

Wudinghe basin, drains 98% of the total basin area. The mean annual precipitation over the basin is 255 

401 mm, of which 72.5% occurs in the rainy season from June to September (Fig. 2). The mean 256 

annual potential evapotranspiration is 1077 mm, and the mean annual runoff is about 39 mm with a 257 

runoff coefficient of 0.1. 258 

 259 

The soil erosion is severe in the Wudinghe basin owing to the highly erodible loess and sparse 260 

vegetation. Since the 1960s, the soil and water conservation measures have been undertaken. Lots of 261 

engineering measures including tree and grass plantation, check dam and reservoir construction, and 262 

land terracing were effectively implemented during several decades. The land use changes caused by 263 

the soil and water conservation measures had a significant effect on increasing water storage capacity 264 

(Xu, 2011). 265 

 266 
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3.2.2 Case 2: Tongtianhe basin 267 

The Tongtianhe basin (Fig. 3) is located in southwestern Qinghai Province in China with a continental 268 

climate. It belongs to the source area of Yangtze River basin with a drainage area of about 140,000 km2 269 

and a total main stream length of 1206 km. The elevation of the Tongtianhe basin approximately ranges 270 

from 3500 to 6500 m above the sea level. Zhimenda is the basin outlet. The mean annual precipitation 271 

over the basin is 440 mm, of which 76.9% occurs in the period from June to September (Fig. 4). The 272 

mean annual potential evapotranspiration is 796 mm, and the mean annual runoff is about 99 mm with a 273 

runoff coefficient of 0.23. The Tongtianhe basin is barely affected by human activities owing to the 274 

limitation of the topographic condition and the water source protection guidelines conducted by the 275 

government. The Tongtianhe basin is used for comparison on model parameter identification. 276 

 277 

3.2.3 Data 278 

The data sets used in this study include monthly precipitation, potential evapotranspiration and runoff in 279 

Wudinghe basin (from 1956 to 2000) and Tongtianhe basin (from 1980 to 2013). The potential 280 

evapotranspiration is estimated using the Penman-Monteith equation (Allen et al., 1998) based on the 281 

meteorological data from the China Meteorological Data Sharing Service System (http://cdc.nmic.cn). 282 

To reduce the impact of the initial conditions, a 2-year data set, i.e., from 1956 to 1957 for Wudinghe 283 

basin and from 1980 to 1981 for Tongtianhe basin, is reserved as the warm-up period. 284 
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 285 

4 Results and discussion  286 

4.1 Synthetic experiment 287 

The comparisons of the estimated and true model parameters under different scenarios are presented 288 

in Fig. 3, Fig. 4 and Fig. 5. Tables 4 and 5 show the evaluation statistics for the parameters and runoff 289 

estimations. The assimilated parameter values are obtained from the ensemble mean at each time step. 290 

The estimations of parameter C  and SC  have the similar trends as the true parameter series. The 291 

temporal variations of the estimated C agree well with the true series, although it has biases on the 292 

peaks of the periodic changes. For SC, the temporal estimates can capture the different changes in 293 

Table 2, especially for the abrupt change where the estimated values respond immediately. Different 294 

uncertainty levels are considered to examine the capability of the EnKF method. The results in Fig. 3 295 

show that the estimated C has more accurate peaks with smaller RMSE and higher R values under the 296 

high level uncertainty (Table 4); whereas, the SC estimates in Fig. 4 have some fluctuations when the 297 

uncertainty level increases. This is due to the reason that the estimated values vary with increasing 298 

uncertainty level in the assimilation process. In the synthetic experiment, the true C is assumed to be 299 

periodic with higher degree of variation, while the true SC series have less variation.  300 

 301 

It should be noted that there are time lags between the assimilated and true C. The observation at the 302 
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current time step is used to adjust the state variables and parameters in EnKF, and the updates of 303 

parameters depend on the Kalman gain for parameters. A runoff observation at the current time is 304 

determined by states at the current and previous time steps (Pauwels and Lannoy, 2006). The Kalman 305 

gain is dependent on the relative value of observation error to model error. The updated states are 306 

closer to the observation with a higher Kalman gain (Tamura et al., 2014). The synthetic C series were 307 

assumed to be periodic where lots of peak values exist; while the variation of SC series is less. The 308 

time lag between assimilated and true values exists especially when peak values occur (Clark et al., 309 

2008; Samuel et al., 2014). 310 

 311 

The results for the scenario of constant parameters are shown in Fig. 5, demonstrating that the 312 

estimated parameters can approach their true values after the initial 24 assimilation steps. The grey 313 

areas represent the 95% uncertainty intervals, which reduce quickly and approach to a stable spread. 314 

The performance of the estimated parameters is correlated with the uncertainty level. Higher 315 

precipitation and runoff observation errors correspond to greater RMSE values (Table 4) of estimated 316 

parameters and uncertainty ranges. The performance of runoff estimations for various parameter 317 

changes under different levels of uncertainty is shown in Table 5, suggesting that the EnKF perfectly 318 

matches the observations with NSEs higher than 0.95 and absolute VEs smaller than 0.02. The EnKF 319 

can successfully capture the temporal variations of the true parameters, although the uncertainty levels 320 
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of the observations can affect its performance on a certain degree. The above results demonstrate that 321 

the EnKF is able to identify the temporal variation of the model parameters by updating the state 322 

variables and parameters based on the runoff observations.  323 

 324 

4.2 Case studies 325 

Fig. 6 shows the double mass curve between monthly runoff and precipitation for the Wudinghe and 326 

Tongtianhe basins, respectively. The top panel shows the linear relationship between cumulative runoff 327 

and precipitation pre- and post-1972 in the Wudinghe basin, which is similar to the result presented by 328 

Xu (2011) and Li et al. (2014). The results show two straight lines with different slopes for the 329 

relationships between precipitation and runoff, indicating that an abrupt change occurred in 1972, 330 

namely, the runoff generation had been changed from this year due to the soil and water conservation 331 

measures. While the bottom panel demonstrates a single linear relationship fits all the data for the 332 

Tongtianhe basin, suggesting a stable precipitation-runoff relationship during the 1982-2013 period. 333 

 334 

The estimated parameters and the associated 95% uncertainty intervals are shown in Fig. 7. The time 335 

series of estimated SC shows an apparent increasing trend, with two different trends for pre- and 336 

post-turning point in Fig. 6(a). The temporal variation of the water storage capacity is correlated with 337 

the changes of land use and land cover. Both the trends in Fig. 7(c) show an increase of SC, because the 338 
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implementation of the large-scale engineering measures significantly improved the water holding 339 

capacity of the Wudinghe basin, especially for the reservoir and check dam construction. The trend 340 

slopes of the two periods, one is from 1956 to 1971, the other is from 1972 to 2000, are different 341 

because the degree of implementing engineering measures varied during the period of 1958-2000. 342 

Moreover, the increase of the water holding capacity slowed down during the 1980s due to the 343 

sedimentation in reservoirs and check dams after periods of operation (Wang and Fan, 2003). Fig. 8 344 

shows the runoff reduction caused by all the soil and water conservation measures, i.e., land terracing, 345 

tree and grass plantation, check dam and reservoir construction. The runoff reduction positively relates 346 

to the water holding capacity, namely the SC value. The slope for the period of 1958-1971 is higher than 347 

that for the period of 1972-1996, suggesting that the SC in the former period has higher increasing trend. 348 

The runoff reduction data is available from 1956 to 1996 (Wang and Fan, 2003). On the other hand, the 349 

result of Tongtianhe basin shows that the estimated SC  has no detectable trend since the R  value has 350 

an insignificance level. Moreover, the ranges and standard deviation of the estimated SC  values are 351 

much smaller than those in the Wudinghe basin (Fig. 7), suggesting that the estimated SC has no 352 

obvious temporal variations.  353 

 354 

For parameter C, the results show that the estimates have no obvious temporal patterns because the 355 

trend line slopes are almost zero and the standard deviations are relatively small for the two basins (Fig. 356 
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7(a) and (b)). However, the temporal variations exist in the estimated C values, indicating that this 357 

parameter has different values during the time steps and can be treated as time-variant parameters. The 358 

temporal variations of the estimated C are related to the variation of monthly actual evaporation, which 359 

is affected by multiple climatic factors, such as air temperature, soil moisture and solar irradiance (Su et 360 

al., 2015). The grey regions represent the 95% uncertainty intervals obtained from the parameter 361 

ensembles. The stable and narrow uncertainty bounds shown in Fig. 7 indicate that the EnKF can 362 

provide superior performance of parameter estimation. The runoff simulations for both the two basins 363 

have good match with the runoff observations. Specifically, the NSE and VE for the Wudinghe basin are 364 

0.93 and 0.07 respectively. While the corresponding index values are 0.99 and 0.04 for the Tongtianhe 365 

basin. 366 

 367 

In summary, the above results demonstrate that the EnKF can identify the temporal variation of model 368 

parameters well by updating both state variables and parameters based on the runoff observations. The 369 

trends of parameter SC  can be explained by the changes of catchment characteristics (i.e., land use 370 

and land cover) in the Wudinghe basin. However, the estimated SC  for the Tongtianhe basin is 371 

approximately stable with small standard deviation because the basin is located in a water protection 372 

zone and has no significant changes on water storage capacity caused by human activities. The 373 

parameter C has temporal variations and can be treated as a time-variant parameter for both basins, 374 
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although the estimates have no obvious temporal patterns. Therefore, the EnKF is capable of identifying 375 

the temporal variations of model parameters. 376 

 377 

5 Conclusions 378 

This study proposes an ensemble Kalman filter (EnKF) to identify the temporal variation of model 379 

parameters in the two-parameter monthly water balance model (TWBM) by assimilating the runoff 380 

observations. A synthetic experiment, which contains four scenarios with different changes of model 381 

parameters and one scenario with constant parameters, is designed to examine the capability of the 382 

proposed approach.  Furthermore, three different levels of observation uncertainty are taken to assess 383 

the performance of the EnKF. The main conclusions are drawn as follows: For the time-variant 384 

parameters, the EnKF can provide superior performance even though slight time lags exist when 385 

parameters have periodic variations. The true values of the constant parameters can be approached 386 

quickly after 24 time steps of assimilation process. The temporal variations of the parameters can be 387 

successfully captured under a high level of uncertainty, although the observation uncertainties from 388 

precipitation and runoff have an influence on the performance of the EnKF. 389 

 390 

The EnKF method is applied to the Wudinghe basin in China, aiming to detect the temporal variations 391 

of the model parameters and to provide an explanation for the parameter variation from the perspective 392 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-370, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 10 August 2016
c© Author(s) 2016. CC-BY 3.0 License.



 

24 

 

of the catchment characteristic changes. Meanwhile, a comparison is implemented to investigate the 393 

variation of model parameters in the Tongtianhe basin, which is barely affected by human activities. The 394 

parameter of water storage capacity ( SC ) for the monthly water balance model shows a significant 395 

increasing trend for the period of 1958-2000 in the Wudinghe basin. The soil and water conservation 396 

measures, including land terracing, tree and grass plantation, check dam and reservoir construction, 397 

have been implemented during 1958 to 2000, resulting in the increase of the water holding capacity of 398 

the basin, which explains the increasing trends of SC . Moreover, the magnitudes of the engineering 399 

measures in different time periods play an important role in the degree of increasing trend for SC. In the 400 

Tongtianhe basin, the parameter SC  has no significant trend for the period of 1982-2013, which is 401 

consistent with the relatively stationary catchment characteristics. The evapotranspiration parameter (C) 402 

has temporal variations and can be treated as time-variant parameter, but no obvious trends exist. 403 

 404 

The method proposed in this paper provides an effective tool for the time-variant model parameters 405 

identification. Future work will be focused on the influence of the correlations between/among model 406 

parameters and performance comparison of multiple data assimilation methods. 407 
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 582 

Tables 583 

Table 1. States and parameters of the two-parameter monthly water balance model. 584 

Parameters and state variables Description Ranges and unit 

Parameter C Evapotranspiration parameter 0.2-2.0 (-) 

SC Catchment water storage capacity 100-4000 (mm) 

State variable S Soil water content mm 

585 
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 586 

Table 2. Different variations of model parameters in the synthetic experiment. 587 

Scenario Description 

Scenario 1 C has a periodic variation, and SC has an increasing trend  

Scenario 2 C has a periodic variation, and SC has an abrupt change 

Scenario 3 C has a periodic variation with an increasing trend, and SC has an increasing trend  

Scenario 4 C has a periodic variation with an increasing trend, and SC has an abrupt change 

Scenario 5 Both C and SC are constant 

588 
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 589 

Table 3. Proportional factors of the standard deviations for precipitation (γP) and runoff (γQ) uncertainties. 590 

Type Low level Medium level High level 

γP 0 0.05 0.10 

γQ 0.05 0.10 0.20 
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 591 

Table 4. Performance statistics for various changes of (a) parameter C and (b) SC estimations under different levels 592 

of uncertainty in the synthetic experiment. 593 

Scenario Low level Medium level High level 

RMSE MARE R RMSE MARE R RMSE MARE R 

(a) Parameter C 

Scenario 1 0.15 0.21 0.55 0.16 0.18 0.68 0.18 0.11 0.89 

Scenario 2 0.16 0.19 0.63 0.17 0.16 0.75 0.18 0.09 0.91 

Scenario 3 0.12 0.13 0.64 0.13 0.11 0.72 0.14 0.07 0.91 

Scenario 4 0.13 0.12 0.70 0.13 0.10 0.77 0.14 0.06 0.93 

Scenario 5 0 -- -- 0 -- -- 0 -- -- 

(b) Parameter SC 

Scenario 1 182.87 0.03 0.99 187.76 0.05 0.94 253.35 0.83 0.83 

Scenario 2 158.30 0.04 0.96 167.47 0.07 0.91 189.59 0.80 0.80 

Scenario 3 180.20 0.03 0.99 183.06 0.04 0.97 215.04 0.88 0.88 

Scenario 4 156.42 0.03 0.97 158.50 0.05 0.93 170.90 0.86 0.86 

Scenario 5 1.54 -- -- 3.67 -- -- 20.54 -- -- 
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 595 

Table 5. Performance of runoff estimations for various parameter changes under different levels of uncertainty in the 596 

synthetic experiment. 597 

Scenario Low level Medium level High level 

NSE VE NSE VE NSE VE 

Scenario 1 0.999 -0.0003 0.988 -0.0046 0.967 -0.0230 

Scenario 2 0.999 0.0001 0.990 -0.0028 0.967 -0.0141 

Scenario 3 0.999 -0.0011 0.990 -0.0013 0.974 -0.0264 

Scenario 4 0.999 -0.0009 0.992 0.0002 0.959 -0.0147 

Scenario 5 0.999 -0.0022 0.992 -0.0077 0.961 -0.0187 
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Figures 598 

 599 
Figure. 1. Location and mean monthly precipitation and runoff from 1956 to 2000 of the Wudinghe basin.600 
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 601 

 602 
Figure. 2. Location and mean monthly precipitation and runoff from 1980 to 2013 of the Tongtianhe basin.603 
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 604 

 605 

Figure. 3. Comparison between estimated C and its true values for various parameter changes under different 606 

uncertainty levels. The grey areas represent the 95% uncertainty intervals.607 
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 608 

 609 

Figure. 4. Comparison between estimated SC and its true values for various parameter changes under different 610 

uncertainty levels. The grey areas represent the 95% uncertainty intervals.611 
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 612 

 613 
Figure. 5. Estimations of time-invariant C and SC under different uncertainty levels. The grey areas represent the 614 

95% uncertainty intervals.615 
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 616 

 617 

Figure. 6. Double mass curve between monthly runoff and precipitation for Wudinghe basin within the period of 618 

1958-2000 (top figure) and Tongtianhe basin within the period of 1982-2013 (bottom), respectively.619 
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 620 

 621 

Figure. 7. Estimated parameter values of C and SC for (1) Wudinghe basin within the period of 1958-2000, and (2) 622 

Tongtianhe basin within the period of 1982-2013. The grey areas represent the 95% uncertainty intervals. Note that 623 

the MSE denotes the standard deviation of the estimated parameter values.  624 
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 625 

 626 

Figure 8. Runoff reduction in Wudinghe basin caused by all the soil and water conservation measures, i.e., land 627 

terracing, tree and grass plantation, check dam and reservoir construction for the period of 1958- 1996. The data is 628 

from Wang and Fan, 2003. 629 
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